If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(6x)^2+(2x)^2=40000
We move all terms to the left:
(6x)^2+(2x)^2-(40000)=0
We add all the numbers together, and all the variables
8x^2-40000=0
a = 8; b = 0; c = -40000;
Δ = b2-4ac
Δ = 02-4·8·(-40000)
Δ = 1280000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1280000}=\sqrt{640000*2}=\sqrt{640000}*\sqrt{2}=800\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-800\sqrt{2}}{2*8}=\frac{0-800\sqrt{2}}{16} =-\frac{800\sqrt{2}}{16} =-50\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+800\sqrt{2}}{2*8}=\frac{0+800\sqrt{2}}{16} =\frac{800\sqrt{2}}{16} =50\sqrt{2} $
| 7x=8+43 | | -9x+14=-4x-1 | | 10x²+x-21=0 | | F(x)=-x3+9x2+24x+14 | | 21x-9=27+90 | | -36+n=10 | | 72+2x+8=90 | | 21x-9+27=90 | | 3b+b=b+9.2 | | b+20=42 | | w-7=;w=13 | | 3x=1+2x–8–6x | | 5x–16=34 | | h+1+h=3h | | 2x^2+6x^2=40000 | | 3x/11-9/11=3/11 | | 14(x-8)+15x=100x-33x+2 | | 3(7x-4)-(5-6(x-4))=2+(5-3x) | | x+7=−9 | | 2(c+8)=24c | | 1/3x+22=4/3x2 | | 2(4-3)-5u=-3(4+3) | | 12-6n=-60 | | 2(c+8)=24c= | | 8b-6=42 | | 8e=14+2 | | 15=4x-15-10x | | 5/4-3/4*(1/3+x/2)-(2x-5/6-1)=1 | | 3.75x-3.75=2.50x-35 | | 9x+14+4x+1+83=180 | | x^2-5^2=100 | | 2(x-3(5-2x))=10(-x+9) |